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Introduction Why a tutorial on teaching?

Teaching about teaching?

Teaching should not remain static

Applications change (and we should want them to)
◮ Signal processing thinking should be applied broadly
◮ Global Fourier techniques relatively less important than in the past

Computing platforms change (and we should want them to)
◮ Classical DSP architectures relative less important than in the past
◮ Likely to use high-level programming languages

Students change (and we should want them to)
◮ Different base of knowledge
◮ Biology, economics, social sciences, . . .

Eternal challenge of the educator
◮ Knowledge grows, time in school does not
◮ Must be willing to cull details to convey big picture
◮ Should teach what is most reusable and generalizable
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Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 3 / 90



Introduction Overview

Overview

Goals of the tutorial:

See that geometric notions unify (simplify!) signal processing

Learn/review basics of Hilbert space view

See Hilbert space view in action

Learn about textbooks Foundations of Signal Processing and
Fourier and Wavelet Signal Processing

Structure of the tutorial:

Developing unified view of signal processing

Hilbert space tools—Part I: Basics through projections
◮ A few key results (best approximation and the projection theorem)

Hilbert space tools—Part II: Bases through discrete-time systems

Example lecture: Sampling made easy

Textbooks and related materials
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Basic Principles in Teaching SP with Geometry Unified view

Unifying principles

Signal processing has various dichotomies

continuous time vs. discrete time

infinite intervals vs. finite intervals

periodic vs. aperiodic

deterministic vs. stochastic

Each can placed in a common framework featuring geometry

Example payoffs:

Unified understanding of best approximation (projection theorem)

Unified understanding of Fourier domains

Unified understanding of signal expansions (including sampling)
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Basic Principles in Teaching SP with Geometry Unified view

Unifying framework: Hilbert spaces

Examples of Hilbert spaces:

finite-dimensional vectors (basic linear algebra)

sequences on {. . . , −1, 0, 1, . . .} (discrete-time signals)

sequences on {0, 1, . . . , N − 1} (N-periodic discrete-time signals)

functions on (−∞, ∞) (continuous-time signals)

functions on [0, T ] (T -periodic continuous-time signals)

scalar random variables

More abstraction. More mathematics. More difficult?

With framework in place, can go farther, faster

Leverage “real world” geometric intuition
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Basic Principles in Teaching SP with Geometry Unified view

Mathematical rigor

Everything should be made as simple as possible, but no simpler.

– Common paraphrasing of Albert Einstein

Make everything as simple as possible without being wrong.

– Our variant for teaching

Correct intuitions are separate from functional analysis details

Teach the difference among

◮ rigorously true, with elementary justification

◮ rigorously true, justification not elementary (e.g., Poisson sum formula)

◮ convenient and related to rigorous statements (e.g., uses of Dirac delta)

. . . if whether an airplane would fly or not depended on whether some

function . . . was Lebesgue but not Riemann integrable, then I would not

fly in it.

– Richard W. Hamming
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Vector spaces

A vector space generalizes easily beyond the R2 Euclidean plane

Axioms

A vector space over a field of scalars C (or R) is a set of vectors V together
with operations

◮ vector addition: V × V → V

◮ scalar multiplication: C× V → V

that satisfy the following axioms:

1. x + y = y + x

2. (x + y) + z = x + (y + z)
3. ∃ 0 ∈ V s.t. x + 0 = x for all x ∈ V

4. α(x + y) = αx + αy
5. (α+ β)x = αx + βx
6. (αβ)x = α(βx)
7. 0x = 0 and 1x = x
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Vector spaces

Examples

CN : complex (column) vectors of length N

CZ: sequences – discrete-time signals

(write as infinite column vector)

CR: functions – continuous-time signals

polynomials of degree at most K

scalar random variables

discrete-time stochastic processes
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Vector spaces

Key notions

Subspace

◮ S ⊆ V is a subspace when it is closed under vector addition and scalar
multiplication:

⋆ For all x , y ∈ S, x + y ∈ S

⋆ For all x ∈ S and α ∈ C, αx ∈ S

Span

◮ S : set of vectors (could be infinite)

◮ span(S) = set of all finite linear combinations of vectors in S :

S =

{
N−1∑

k=0

αkϕk | αk ∈ C, ϕk ∈ S and N ∈ N

}

◮ span(S) is always a subspace
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Vector spaces

Key notions

Linear independence
◮ S = {ϕk}

N−1
k=0 is linearly independent when:

N−1∑

k=0

αkϕk = 0 only when αk = 0 for all k

◮ If S is infinite, we need every finite subset to be linearly independent

Dimension
◮ dim(V ) = N if V contains a linearly independent set with N vectors and every

set with N + 1 or more vectors is linearly dependent

◮ V is infinite dimensional if no such finite N exists
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Inner products

Inner products generalize angles (especially right angles) and orientation

Definition (Inner product)

An inner product on vector space V is a function 〈·, ·〉 : V × V → C

satisfying

1 Distributivity: 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉

2 Linearity in the first argument: 〈αx , y〉 = α〈x , y〉

3 Hermitian symmetry: 〈x , y〉∗ = 〈y , x〉

4 Positive definiteness: 〈x , x〉 ≥ 0 and 〈x , x〉 = 0 if and only if x = 0

Note: 〈x , αy〉 = α∗〈x , y〉
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Inner products

Examples

On CN : 〈x , y〉 =

N−1∑

n=0

xny
∗
n = y∗x (writing x and y as column vectors)

On CZ: 〈x , y〉 =
∑

n∈Z

xny
∗
n = y∗x (writing x and y as column vectors)

On CR: 〈x , y〉 =

∫ ∞

−∞

x(t)y∗(t) dt

On C-valued random variables: 〈x, y〉 = E[ xy∗ ]
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Geometry in inner product spaces

Drawn in R2 and true in general:

〈x , y〉 = x1y1 + x2y2

= ‖x‖ ‖y‖ cosα

= product of 2-norms times the cos
of the angle between the vectors

〈x , e1〉 = x1 = ‖x‖ cosαx

Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 14 / 90
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Orthogonality

Let S = {ϕi}i∈I be a set of vectors

Definition (Orthogonality)

x and y are orthogonal when 〈x , y〉 = 0 written x ⊥ y

S is orthogonal when for all x , y ∈ S , x 6= y we have x ⊥ y

S is orthonormal when it is orthogonal and for all x ∈ S , 〈x , x〉 = 1

x is orthogonal to S when x ⊥ s for all s ∈ S , written x ⊥ S

S0 and S1 are orthogonal when every s0 ∈ S0 is orthogonal to S1, written
S0 ⊥ S1

Right angles (perpendicularity) extends beyond Euclidean geometry
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Norm

Norms generalize length in ordinary Euclidean space

Definition (Norm)

A norm on V is a function ‖·‖ : V → R satisfying

1 Positive definiteness: ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0

2 Positive scalability: ‖αx‖ = |α| ‖x‖

3 Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖ with equality if and only if y = αx

Any inner product induces a norm

‖x‖ =
√
〈x , x〉

Not all norms are induced by an inner product
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Norms induced by inner products

Any inner product induces a norm: ‖x‖ =
√
〈x , x〉

Examples

On CN : ‖x‖ =
√
〈x , x〉 =

(
N−1∑

n=0

|xn|
2

)1/2

On CZ: ‖x‖ =
√
〈x , x〉 =

(
∑

n∈Z

|xn|
2

)1/2

On CR: ‖x‖ =
√
〈x , x〉 =

(∫ ∞

−∞

|x(t)|2 dt

)1/2

On C-valued random variables: ‖x‖ =
√
〈x, x〉 =

(
E
[
|x|2

])1/2
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Norms induced by inner products

Properties

Pythagorean theorem

◮ x ⊥ y ⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2

◮ {xk}k∈K orthogonal ⇒

∥∥∥∥
∑

k∈K

xk

∥∥∥∥
2

=
∑

k∈K

‖xk‖
2

x

y
x + y
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Norms induced by inner products

Properties

Cauchy–Schwarz inequality

|〈x , y〉| ≤ ‖x‖ ‖y‖

Examples

On CN :
∣∣∣
∑N−1

n=0 xny
∗
n

∣∣∣ ≤
(∑N−1

n=0 |xn|
2
)1/2 (∑N−1

n=0 |yn|
2
)1/2

On C-valued random variables: |E[ xy∗ ]| ≤
(
E
[
|x|2

]
E
[
|y|2

])1/2

⇒ correlation coefficient ρ satisfies |ρ| ≤ 1

cos θ =
〈x , y〉

‖x‖ ‖y‖
defines angle θ between vectors
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Norms not necessarily induced by inner products

Examples

On CN : ‖x‖p =
(∑N−1

n=0 |xn|
p
)1/p

, p ∈ [1,∞)

On CZ: ‖x‖p =
(∑

n∈Z
|xn|p

)1/p
, p ∈ [1,∞)

‖x‖∞ = sup
n∈Z

|xn|

On CR: ‖x‖p =
(∫∞

−∞
|x(t)|p dt

)1/p

, p ∈ [1,∞)

‖x‖∞ = ess sup
t∈R

|x(t)|

Only induced by inner products for p = 2
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Geometry of ℓp: Unit balls

x0

x1

‖x‖1/2 = 1
‖x‖1 = 1
‖x‖2 = 1
‖x‖4 = 1
‖x‖∞ = 1

Valid norm (and convex unit ball) for p ≥ 1; ordinary geometry for p = 2
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Normed vector spaces

A normed vector space is a set satisfying axioms of a vector space where the
norm is finite

ℓ2(Z): square-summable sequences (“finite-energy discrete-time signals”)

‖x‖ =

(
∑

n∈Z

|xn|
2

)1/2

< ∞

L2(R): square-integrable functions (“finite-energy continuous-time signals”)

‖x‖ =

(∫ ∞

−∞

|x(t)|2 dt

)1/2

< ∞

x and y are the same when ‖x − y‖ = 0

No harm in considering only functions with finitely-many discontinuities
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Hilbert spaces: Convergence

Definition
A sequence of vectors x0, x1, . . . in a normed vector space V is said to converge

to v ∈ V when limk→∞‖v − xk‖ = 0, or for any ε > 0, there exists Kε such that

‖v − xk‖ < ε for all k > Kε.

Choice of the norm in V is key

Example

For k ∈ Z+, let

xk(t) =

{
1, for t ∈ [0, 1/k];
0, otherwise.

v(t) = 0 for all t. Then for p ∈ [1,∞),

‖v − xk‖p =

(∫ ∞

−∞

|v(t) − xk(t)|
p
dt

)1/p

=

(
1

k

)1/p
k→∞
−→ 0.

For p =∞: ‖v − xk‖∞ = 1 for all k
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Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 23 / 90



Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Hilbert spaces: Completeness

Definitions

A sequence {xn} is a Cauchy sequence in a normed space when for any
ε > 0, there exists kε such that ‖xk − xm‖ < ε for all k ,m > kε

A normed vector space V is complete if every Cauchy sequence converges in V

A complete normed vector space is called a Banach space

A complete inner product space is called a Hilbert space
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Hilbert spaces

Examples

Q is not a complete space

◮

∞∑

n=1

1

n2
→

π2

6
∈ R, /∈ Q

◮

∞∑

n=0

1

n!
→ e ∈ R, /∈ Q

1 2 5
2

8
3
65
24

e

R is a complete space
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Hilbert spaces

Examples

All finite-dimensional spaces (over field of scalars C or R) are complete

ℓp(Z) and Lp(R) are complete

◮ ℓ2(Z) and L2(R) are Hilbert spaces

C q([a, b]), functions on [a, b] with q continuous derivatives, are not complete
except for q = 0 under L∞ norm
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Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 26 / 90



Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Hilbert spaces

Examples

All finite-dimensional spaces (over field of scalars C or R) are complete

ℓp(Z) and Lp(R) are complete

◮ ℓ2(Z) and L2(R) are Hilbert spaces

C q([a, b]), functions on [a, b] with q continuous derivatives, are not complete
except for q = 0 under L∞ norm
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Summary on spaces

Vector spaces

Normed vector spaces

Inner product spaces

• QN

• C ([a, b])

Banach spaces

• ℓ1(Z)

• ℓ∞(Z)

• L1(R)

• L∞(R)

Hilbert
spaces

• CN

• ℓ2(Z)

• L2(R)

• (V , d)

• ℓ0(Z)

• (C 1([a, b]), ‖ · ‖∞)
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Linear operators

Linear operators generalize matrices

Definitions
A : H0 → H1 is a linear operator when for all x , y ∈ H0, α ∈ C:

1 Additivity: A(x + y) = Ax + Ay

2 Scalability: A(αx) = α(Ax)

Null space (subspace of H0): N (A) = {x ∈ H0,Ax = 0}

Range space (subspace of H1): R(A) = {Ax ∈ H1, x ∈ H0}

Operator norm: ‖A‖ = sup
‖x‖=1

‖Ax‖

A is bounded when: ‖A‖ <∞

Inverse: Bounded B : H1 → H0 inverse of bounded A if and only if:
BAx = x , for every x ∈ H0

ABy = y , for every y ∈ H1
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Linear operators: Illustration

R(A) is the plane 5y1 + 2y2 + 8y3 = 0
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Adjoint operators

Adjoint generalizes Hermitian transposition of matrices

Definition (Adjoint and self-adjoint operators)

A∗ : H1 → H0 is the adjoint of A : H0 → H1 when

〈Ax , y〉H1 = 〈x , A
∗y〉H0 for every x ∈ H0, y ∈ H1

If A = A∗,A is self-adjoint or Hermitian

Note that N (A∗) = R(A)⊥
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Adjoint operator: Illustration

N (A∗) is the line 1
5y1 = 1

2y2 = 1
8y3
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Adjoint operators

Theorem (Adjoint properties)

Let A : H0 → H1 be a bounded linear operator

1 A∗ exists and is unique

2 (A∗)∗ = A

3 AA∗ and A∗A are self-adjoint

4 ‖A∗‖ = ‖A‖

5 If A is invertible, (A−1)∗ = (A∗)−1

6 If B : H0 → H1 is bounded, (A+ B)∗ = A∗ + B∗

7 If B : H1 → H2 is bounded, (BA)∗ = A∗B∗
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Adjoint operators: Local averaging

A : L2(R) → ℓ2(Z) (Ax)k =

∫ k+1/2

k−1/2

x(t) dt

〈Ax , y〉ℓ2 =
∑

n∈Z

(Ax)n y
∗
n =

∑

n∈Z

(

∫ n+1/2

n−1/2
x(t) dt

)

y∗
n =

∑

n∈Z

∫ n+1/2

n−1/2
x(t)y∗

n dt

=
∑

n∈Z

∫ n+1/2

n−1/2
x(t)(A∗y)∗(t) dt =

∫ ∞

−∞
x(t)(A∗y)∗(t) dt = 〈x , A∗y〉L2
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Unitary operators

Definition (Unitary operators)

A bounded linear operator A : H0 → H1 is unitary when:

1 A is invertible

2 A preserves inner products: 〈Ax , Ay〉H1 = 〈x , y〉H0 for every x , y ∈ H0

If A is unitary, then ‖Ax‖2 = ‖x‖2

A is unitary if and only if A−1 = A∗
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part I: Basics through projections

Projection operators

Definition (Projection, orthogonal projection, oblique projection)

P is idempotent when P2 = P

A projection operator is a bounded linear operator that is idempotent

An orthogonal projection operator is a self-adjoint projection operator

An oblique projection operator is not self adjoint
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Projection operators

Definition (Projection, orthogonal projection, oblique projection)

P is idempotent when P2 = P

A projection operator is a bounded linear operator that is idempotent

An orthogonal projection operator is a self-adjoint projection operator

An oblique projection operator is not self adjoint

Theorem
If A : H0 → H1, B : H1 → H0 bounded and A is a left inverse of B, then BA is

a projection operator. If B = A∗ then, BA = A∗A is an orthogonal projection

(BA)2 = BABA = B(AB)A = BA
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Best approximation: Euclidean geometry

x is a point in Euclidean space

S is a line in Euclidean space

S

•x
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S is a line in Euclidean space

S

•x

Nearest point problem: Find x̂ ∈ S that is closest to x
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Best approximation: Euclidean geometry

x is a point in Euclidean space

S is a line in Euclidean space

S

•x

•
x̂•

x ′

Nearest point problem: Find x̂ ∈ S that is closest to x

Solution uniquely determined by x − x̂ ⊥ S

◮ Circle must touch S in one point, radius ⊥ tangent
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x is a point in Euclidean space

S is a line in Euclidean space

0

S

x

•
x̂•

x ′
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Best approximation: Hilbert space geometry

S closed subspace of a Hilbert space

Best approximation problem:

Find x̂ ∈ S that is closest to x

x̂ = argmin
s∈S

‖x − s‖

0

S

x

•
x̂•

x ′
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Best approximation by orthogonal projection

Theorem (Projection theorem)

Let S be a closed subspace of Hilbert space H and let x ∈ H.

Existence: There exists x̂ ∈ S such that ‖x − x̂‖ ≤ ‖x − s‖ for all s ∈ S

Orthogonality: x − x̂ ⊥ S is necessary and sufficient to determine x̂

Uniqueness: x̂ is unique

Linearity: x̂ = Px where P is a linear operator

Idempotency: P(Px) = Px for all x ∈ H

Self-adjointness: P = P∗

All “nearest vector in a subspace” problems in Hilbert spaces are the same
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Example 1: Least-square polynomial approximation

Consider: x(t) = cos( 32πt) ∈ L
2([0, 1])

Find the degree-1 polynomial closest to x (in L2 norm)

Solution: Use orthogonality

Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 39 / 90



Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Example 1: Least-square polynomial approximation

Consider: x(t) = cos( 32πt) ∈ L
2([0, 1])

Find the degree-1 polynomial closest to x (in L2 norm)

Solution: Use orthogonality
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Consider: x(t) = cos( 32πt) ∈ L
2([0, 1])

Find the degree-1 polynomial closest to x (in L2 norm)

Solution: Use orthogonality

0 = 〈x(t) − x̂(t), 1〉t =

∫ 1

0

(
cos( 3

2πt) − (a0 + a1t)
)
1 dt = −

2

3π
− a0 −

1

2
a1

0 = 〈x(t) − x̂(t), t〉t =

∫ 1

0

(
cos( 3

2πt) − (a0 + a1t)
)
t dt = −

4 + 6π

9π2
−

1

2
a0 −

1

3
a1
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Example 2: MMSE estimate

Consider: Real-valued random variable x

Find the constant c that minimizes E
[
(x− c)2

]

Note:
◮ Expected square is a squared Hilbert space norm
◮ Constants are a closed subspace in vector space of random variables

Solution: Use orthogonality
◮ c determined uniquely by E[ (x− c)αc ] = 0 for all α ∈ R
◮ c = E[ x ]

Alternative:
◮ Expand into quadratic function of c and minimize with calculus
◮ Not too difficult, but lacks insight
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Example 3: Wiener filter

Consider: Jointly wide-sense stationary
discrete-time stochastic processes x and y

Find the linear shift-invariant filter h that
minimizes E

[
|xn − x̂n|2

]
where x̂ = h ∗ y

x

y
h

x̂

+
−

e

Note:
◮ Expected squared absolute value is a squared Hilbert space norm
◮ LSI filtering puts x̂n in a closed subspace

Solution: Use orthogonality (extended for processes)
◮ h determined uniquely by relation between cross- and autocorrelations:

cx,x̂,k = ax̂,k , k ∈ Z

◮ DTFT-domain version: H(e jω) =
Cx,y(e

jω)

Ay(e jω)
, ω ∈ R

Alternative:
◮ Expand into quadratic function of h and minimize with calculus
◮ Messy (!)—especially in complex case—and lacks insight
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Example 4: Best piecewise-constant approximation

Local averaging

A : L2(R)→ ℓ2(Z) (Ax)k =

∫ k+ 1
2

k− 1
2

x(t)dt

has adjoint A∗ : ℓ2(Z)→ L2(R) that produces staircase function

AA∗ is identity, so A∗A is orthogonal projection

æ

æ æ

æ

æ

æ
æ

æ

æ

æ

æ æ

æ

æ æ

æ

5 10 15

-10

-5

5

10

t

x(t), x̂(t)

(A∗A)2 = (A∗A)(A∗A) = A∗ AA∗ A = A∗A
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Example 5: Approximations of “All is vanity” image—Haar

1 2

(−π,−π)

(−π, π)

(π,−π)

(π, π)

1

2
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Example 5: Approximations of “All is vanity” image—Haar

3

(−π,−π)

(−π, π)

(π,−π)

(π, π)
3
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Basic Principles in Teaching SP with Geometry Basic results I: Best approximation

Example 5: Approximations of “All is vanity” image—sinc

1 2

(−π,−π)

(−π, π)

(π,−π)

(π, π)

1

2
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Bases

Definition (Basis)

Φ = {ϕk}k∈K ⊂ V is a basis when

1 Φ is linearly independent and

2 Φ is complete in V : V = span(Φ)

Expansion formula: for any x ∈ V , x =
∑

k∈K

αkϕk

{αk}k∈K : is unique
αk : expansion coefficients

Example

The standard basis for RN

ek =
[
0 0 · · · 0 1 0 0 · · · 0

]T
, k = 0, . . . ,N − 1

any x ∈ RN , x =

N−1∑

k=0

xkek
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Bases

Examples

ϕ0

ϕ1

x

α0

α1

ϕ0

ϕ1

x

α0ϕ0

α1ϕ1

ϕ0

ϕ1

ϕ̃0

ϕ̃1

Orthonormal basis Biorthogonal basis . . . with dual basis

This tutorial concentrates on orthonormal case

Full study should include use of frames (overcomplete sets)
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Operators associated with bases

Definition (Basis synthesis operator)

Synthesis operator

◮ Φ : ℓ2(K) → H Φα =
∑

k∈K

αkϕk

◮ Adjoint: Let α ∈ ℓ2(Z) and y ∈ H

〈Φα, y〉 =

〈∑

k∈K

αkϕk , y

〉
=

∑

k∈K

αk〈ϕk , y〉 =
∑

k∈K

αk〈y , ϕk〉
∗

Definition (Basis analysis operator)

Analysis operator
◮ Φ∗ : H → ℓ2(K) (Φ∗x)k = 〈x , ϕk〉, k ∈ K

Note that the analysis operator is the adjoint of the synthesis operator
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Orthonormal bases

Definition (Orthonormal basis)

Φ = {ϕk}k∈K ⊂ H is an orthonormal basis for H when

1 Φ is a basis for H and

2 Φ is an orthonormal set

〈ϕi , ϕk〉 = δi−k for all i , k ∈ K

If Φ is an orthogonal set, then it is linearly independent

If span(Φ) = H and Φ is an orthogonal set,
then Φ is an orthogonal basis for H

If we also have ‖ϕk‖ = 1, then Φ is an orthonormal basis
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Orthonormal basis expansions

Definition (Orthonormal basis expansions)

Φ = {ϕk}k∈K orthonormal basis for H , then for any x ∈ H :

αk = 〈x , ϕk〉 for k ∈ K, or α = Φ∗x , and α is unique

Synthesis: x =
∑

k∈K

〈x , ϕk〉ϕk = Φα = ΦΦ∗x

Example

ϕ0 = e0
ϕ1 = e1

ϕ2 = e2 x

x01
〈x, ϕ0〉

〈x, ϕ1〉
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Orthonormal basis: Parseval equality

Theorem (Parseval’s equalities)

Φ = {ϕk}k∈K orthonormal basis for H

‖x‖2 =
∑

k∈K

|〈x , ϕk 〉|
2 = ‖Φ∗x‖2 = ‖α‖2

In general:
〈x , y〉 = 〈Φ∗x , Φ∗y〉 = 〈α, β〉

where αk = 〈x , ϕk〉, βk = 〈y , ϕk〉
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H

y

x

θ

Φ∗

Φ

ℓ2(K)

α

β

θ

isometry
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Orthogonal projection and decomposition

Theorem

Φ = {ϕk}k∈I ⊂ H, I ⊂ K

PIx =
∑

k∈I

〈x , ϕk〉ϕk = ΦIΦ
∗
Ix

is the orthogonal projection of x onto SI = span({ϕk}k∈I)

Φ induces an orthogonal decomposition

H =
⊕

k∈K

S{k} where S{k} = span(ϕk)
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Matrix representation of operator: Orthonormal basis

Let y = Ax with A : H → H

How are expansion coefficients of x and y related?
◮ {ϕk}k∈K orthonormal basis of H

◮ x = Φα, y = Φβ

Matrix representation allows computation of A directly on coefficient
sequences

Γ : ℓ2(K)→ ℓ2(K) s.t. β = Γα

As a matrix:

Γ =




...
...

...
· · · 〈Aϕ−1, ϕ−1〉 〈Aϕ0, ϕ−1〉 〈Aϕ1, ϕ−1〉 · · ·

· · · 〈Aϕ−1, ϕ0〉 〈Aϕ0, ϕ0〉 〈Aϕ1, ϕ0〉 · · ·

· · · 〈Aϕ−1, ϕ1〉 〈Aϕ0, ϕ1〉 〈Aϕ1, ϕ1〉 · · ·
...

...
...



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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Matrix representation of operator: Orthonormal basis

ℓ2(K) ℓ2(K)

H H

• •

• •

α β

x y

Γ

A

Φ∗ Φ Φ∗ Φ

Central example for signal processing: H = BL[−π/T , π/T ] ⊂ L2(R)

When orthonormal bases are used, matrix representation of A∗ is Γ∗
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Example: Derivative operator I

Example

Let A : H0 → H1 with y(t) = (Ax)(t) = x ′(t)

H0: piecewise-linear, continuous, finite-energy functions with breakpoints at
integers

H1: piecewise-constant, finite-energy functions with breakpoints at integers

Let ϕ(t) =

{
1− |t|, for |t| < 1;

0, otherwise
and ϕk(t) = ϕ(t − k) for k ∈ Z.

{ϕk}k∈Z is a nonorthonormal basis for H0.

Let 1I (t) =

{
1, for t ∈ I ;
0, otherwise

and ψk = 1[k,k+1) for k ∈ Z.

{ψk}k∈Z is an orthonormal basis for H1.
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Example: Derivative operator II

Example (Cont.)

ϕ′(t) =





1, for −1 < t < 0;
−1, for 0 < t < 1;
0, for |t| > 1,

so 〈Aϕ0, ψ̃i 〉 =





1, for i = −1;
−1, for i = 0;
0, otherwise.

Shifting ϕ by k shifts the derivative: 〈Aϕk , ψ̃i〉 =





1, for i = k − 1;
−1, for i = k ;
0, otherwise.

Then Γ =




...
...

...
...

...
...

· · · 0 −1 1 0 0 0 · · ·

· · · 0 0 −1 1 0 0 · · ·
· · · 0 0 0 −1 1 0 · · ·

...
...

...
...

...
...




Simplicity of matrix representation depends on the basis!
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Discrete-time systems

A linear system A : ℓ2(Z)→ ℓ2(Z) has a matrix representation H with
respect to the standard basis

For a linear shift-invariant (LSI) system, the matrix H is Toeplitz:

y =




...
y−2

y−1

y0

y1
y2
...




=




. . .
...

...
...

...
...

. . .

. . . h0 h−1 h−2 h−3 h−4 . . .

. . . h1 h0 h−1 h−2 h−3 . . .

. . . h2 h1 h0 h−1 h−2 . . .

. . . h3 h2 h1 h0 h−1 . . .

. . . h4 h3 h2 h1 h0 . . .

. . .
...

...
...

...
...

. . .




︸ ︷︷ ︸
H




...
x−2

x−1

x0

x1
x2
...




= Hx
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

Discrete-time systems

Matrix representation of A∗ is H∗ [Note: using orthonormal basis]

H∗ =




. . .
. . .

. . .
. . .

. . . . .
.

. . . h∗0 h∗1 h∗2 h∗3 h∗4

. . . h∗−1 h∗0 h∗1 h∗2 h∗3
. . .

. . . h∗−2 h∗−1 h∗0 h∗1 h∗2
. . .

. . . h∗−3 h∗−2 h∗−1 h∗0 h∗1
. . .

h∗−4 h∗−3 h∗−2 h∗−1 h∗0
. . .

. .
. . . .

. . .
. . .

. . .
. . .




Adjoint of filtering by hn is filtering by h∗−n
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Basic Principles in Teaching SP with Geometry Hilbert space tools—Part II: Bases through discrete-time systems

DTFT and other Fourier representations

Eigensequences lead to diagonal representation of H

Discrete-time Fourier transform follows logically from the class of operators

Convolution theorem follows logically from the definition of the DTFT

Closely-parallel reasoning for all cases:

◮ Sequences (convolution, discrete-time Fourier transform)

◮ Periodic sequences (circular convolution, discrete Fourier transform)

◮ Functions (convolution, Fourier transform)

◮ Periodic functions (circular convolution, Fourier series)
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Example Lecture: Sampling and Interpolation

Example Lecture:

Sampling and Interpolation
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Example Lecture: Sampling and Interpolation Motivation

Sampling and Interpolation

Sampling and interpolation bridge the analog and digital worlds

Sampling: discrete-time sequence from a continuous-time function
Interpolation: continuous-time function from a discrete-time sequence

Doing all computation in discrete time is the essence of digital signal processing:

x(t) Sampling
yn

DT processing
wn

Interpolation v(t)

Interpolation followed by sampling occurs in digital communication:

xn Interpolation
y(t)

CT channel
v(t)

Sampling x̂n
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Example Lecture: Sampling and Interpolation Motivation

Why Study Sampling and Interpolation Further?

Real-world sampling not pure mathematical idealization
◮ Don’t/can’t sample at one point
◮ Causal, non-ideal filters

Many practical architectures different from classical structure
◮ Multichannel, time-interleaved

Most information acquisition is intimately related to sampling
◮ Digital photography
◮ Computational imaging (magnetic resonance, space-from-time, ultrasound,

computed tomography, synthetic aperture radar, . . . )
◮ Reflection seismology, acoustic tomography, . . .

Goals from this lecture:

1 Understand classical sampling as a special case of a Hilbert space theory

2 Gain a generalizable understanding of sampling
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Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 62 / 90



Example Lecture: Sampling and Interpolation Motivation

Why Study Sampling and Interpolation Further?

Real-world sampling not pure mathematical idealization
◮ Don’t/can’t sample at one point
◮ Causal, non-ideal filters

Many practical architectures different from classical structure
◮ Multichannel, time-interleaved

Most information acquisition is intimately related to sampling
◮ Digital photography
◮ Computational imaging (magnetic resonance, space-from-time, ultrasound,

computed tomography, synthetic aperture radar, . . . )
◮ Reflection seismology, acoustic tomography, . . .

Goals from this lecture:

1 Understand classical sampling as a special case of a Hilbert space theory

2 Gain a generalizable understanding of sampling
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Example Lecture: Sampling and Interpolation Classical View and Historical Notes

Bandwidth

Definition (Bandwidth of sequence)

A sequence x is bandlimited when there exists ω0 ∈ [0, 2π) such that the
discrete-time Fourier transform X satisfies

X (e jω) = 0 for all ω with |ω| ∈ (ω0/2, π].

The smallest such ω0 is called the bandwidth of x .
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Example Lecture: Sampling and Interpolation Classical View and Historical Notes

Bandwidth

Definition (Bandwidth of function)

A function x is bandlimited when there exists ω0 ∈ [0,∞) such that the Fourier
transform X satisfies

X (ω) = 0 for all ω with |ω| > ω0/2.

The smallest such ω0 is called the bandwidth of x .

Definition (Bandlimited sets)

The set of sequences in ℓ2(Z) with bandwidth at most ω0 and the set of functions
in L2(R) with bandwidth at most ω0 are denoted BL[−ω0/2, ω0/2]

If ω0 < ω1 then BL[−ω0/2, ω0/2] ⊂ BL[−ω1/2, ω1/2]

A bandlimited set is always a subspace
◮ Subspace is closed in Hilbert space ℓ2(Z) or L2(R)
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Example Lecture: Sampling and Interpolation Classical View and Historical Notes

Classical Sampling

Recall: sinc(t) =

{
(sin t)/t, for t 6= 0;

1, for t = 0

Theorem (Sampling theorem)

Let x be a function and let T > 0. Define

x̂(t) =
∑

n∈Z

x(nT ) sinc( π
T
(t − nT )).

If x ∈ BL[−ω0/2, ω0/2] with ω0 ≤ 2π/T, then x̂ = x.

Exact recovery for (sufficiently) bandlimited signals

Nyquist period for bandwidth ω0: T = 2π/ω0

Nyquist rate for bandwidth ω0: T
−1 = ω0/2π

Easier in cycles/sec rather than radians/sec:
Need two samples per cycle of fastest component
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Example Lecture: Sampling and Interpolation Classical View and Historical Notes

History

Many names:
◮ Shannon sampling theorem
◮ Nyquist–Shannon sampling theorem
◮ Nyquist–Shannon–Kotel’nikov sampling theorem
◮ Whittaker–Shannon–Kotel’nikov sampling theorem
◮ Whittaker–Nyquist–Shannon–Kotel’nikov sampling theorem

Well-known people associated with sampling (but less often so):
◮ Cauchy (1841) – apparently not true
◮ Borel (1897)
◮ de la Vallée Poussin (1908)
◮ E. T. Whittaker (1915)
◮ J. M. Whittaker (1927)
◮ Gabor (1946)

Less-known people, almost lost to history:
◮ Ogura (1920)
◮ Küpfmüller (Küpfmüller filter)
◮ Raabe [PhD 1939] (assistant to Küpfmüller)
◮ Someya (1949)
◮ Weston (1949)

Best approach: use no names?
◮ Cardinal Theorem of interpolation theory
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Example Lecture: Sampling and Interpolation Classical View and Historical Notes

Sampling theorem: Conventional justification

Let x̂(t) =
∑

n∈Z
x(nT ) g(t − nT ) [will deduce that g should be sinc]
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Sampling theorem: Conventional justification

Let x̂(t) =
∑

n∈Z
x(nT ) g(t − nT ) [will deduce that g should be sinc]

Since x(nT ) g(t − nT ) =
∫∞

−∞
x(τ) g(t − τ) δ(τ − nT ) dτ ,

x̂(t) =

∫ ∞

−∞

g(t − τ) x(τ)
∑

n∈Z

δ(τ − nT ) dτ
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−∞
x(τ) g(t − τ) δ(τ − nT ) dτ ,

x̂(t) =

∫ ∞

−∞

g(t − τ) x(τ)
∑

n∈Z

δ(τ − nT ) dτ

Recall: Fourier transform of Dirac comb

∑

n∈Z

δ(t − nT )
FT
←→

2π

T

∑

k∈Z

δ

(
ω −

2π

T
k

)
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Sampling theorem: Conventional justification

Let x̂(t) =
∑

n∈Z
x(nT ) g(t − nT ) [will deduce that g should be sinc]

Since x(nT ) g(t − nT ) =
∫∞

−∞
x(τ) g(t − τ) δ(τ − nT ) dτ ,

x̂(t) =

∫ ∞

−∞

g(t − τ) x(τ)
∑

n∈Z

δ(τ − nT )

︸ ︷︷ ︸
h(τ )

dτ

Recall: Fourier transform of Dirac comb

∑

n∈Z

δ(t − nT )
FT
←→

2π

T

∑

k∈Z

δ

(
ω −

2π

T
k

)

Take Fourier transforms, using convolution theorem for right side:

X̂ (ω) = G(ω)
1

T

∑

k∈Z

X

(
ω −

2π

T
k

)

︸ ︷︷ ︸
H(ω)
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Example Lecture: Sampling and Interpolation Classical View and Historical Notes

Sampling theorem: Conventional justification

X̂ (ω) =
1

T
G(ω)

∑

k∈Z

X

(
ω −

2π

T
k

)

Reconstruction X̂ has “spectral replication”

How can we have X̂ (ω) = X (ω) for all ω?
◮ x ∈ BL[−π/T , π/T ] implies replicas do not overlap

◮ G(ω) =

{
T , for |ω| < π/T ;
0, for t = 0

selects “desired” replica with correct gain

Shows recovery and deduces correctness of sinc interpolator
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Example Lecture: Sampling and Interpolation Classical View and Historical Notes

Dissatisfaction

Mathematical rigor of derivation:

∑

n∈Z

δ(t − nT )
FT
←→

2π

T

∑

k∈Z

δ

(
ω −

2π

T
k

)

◮ Not a convergent Fourier transform (in elementary sense)

Mathematical plausibility of use:

x̂(t) =
∑

n∈Z

x(nT ) sinc( π
T
(t − nT ))

◮ At each t, reconstruction is an infinite sum

◮ Very slow decay of terms makes truncation accuracy poor

Technological implementability:
◮ Point measurements difficult to approximate physically

◮ Causality of reconstruction
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Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 69 / 90



Example Lecture: Sampling and Interpolation Classical View and Historical Notes

Dissatisfaction

Mathematical rigor of derivation:

∑

n∈Z

δ(t − nT )
FT
←→

2π

T

∑

k∈Z

δ

(
ω −

2π

T
k

)

◮ Not a convergent Fourier transform (in elementary sense)

Mathematical plausibility of use:

x̂(t) =
∑

n∈Z

x(nT ) sinc( π
T
(t − nT ))

◮ At each t, reconstruction is an infinite sum

◮ Very slow decay of terms makes truncation accuracy poor

Technological implementability:
◮ Point measurements difficult to approximate physically

◮ Causality of reconstruction
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Example Lecture: Sampling and Interpolation Operator View

Operator view: Interpolation

Definition (Interpolation operator)

For a fixed positive T and interpolation postfilter g(t), let Φ : ℓ2(Z)→ L2(R) be
given by

(Φ y)(t) =
∑

n∈Z

yn g(t − nT ), t ∈ R

y
T

g(t) x̂

Φ

Generalizes sinc interpolation

For simplicity, we will consider only T = 1: (Φ y)(t) =
∑

n∈Z
yn g(t − n)
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Example Lecture: Sampling and Interpolation Operator View

Reconstruction space

Range of interpolation operator has special form

Definition (Shift-invariant subspace of L2(R))

A subspace W ⊂ L2(R) is a shift-invariant subspace with respect to shift T ∈ R+

when x(t) ∈W implies x(t − kT ) ∈ W for every integer k . In addition,
w ∈ L2(R) is called a generator of W when W = span({w(t − kT )}k∈Z).

Range of Φ is a shift-invariant subspace generated by g
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Example Lecture: Sampling and Interpolation Operator View

Operator view: Sampling

Definition (Sampling operator)

For a fixed positive T and sampling prefilter g∗(−t), let Φ∗ : L2(R)→ ℓ2(Z) be
given by

(Φ∗ x)n = 〈x(t), g(t − nT )〉t , n ∈ Z

x g∗(−t) T y

Φ∗

For simplicity, we will consider only T = 1:

(Φ∗ x)n = 〈x(t), g(t − n)〉t
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Example Lecture: Sampling and Interpolation Operator View

Adjoint relationship between sampling and interpolation

Theorem
Sampling and interpolation operators are adjoints

Let x ∈ L2(R) and y ∈ ℓ2(Z)

〈Φ∗ x , y〉 =
∑

n∈Z

〈x(t), g(t − n)〉t y
∗
n

=
∑

n∈Z

(∫ ∞

−∞

x(t) g∗(t − n) dt

)
y∗
n

=

∫ ∞

−∞

x(t)

(
∑

n∈Z

g∗(t − n) y∗
n

)
dt

=

∫ ∞

−∞

x(t)

(
∑

n∈Z

yn g(t − n)

)∗

dt

= 〈x , Φ y〉
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Example Lecture: Sampling and Interpolation Operator View

Relationships between sampling and interpolation

Sampling followed by interpolation: x̂ = ΦΦ∗ x

x(t) g∗(−t) T
yn

T
g(t) x̂(t)

x̂ is best approximation of x within shift-invariant subspace generated by g if
P = ΦΦ∗ is an orthogonal projection operator

P is automatically self-adjoint: P∗ = (ΦΦ∗)∗ = P

Need P idempotent: P2 = ΦΦ∗ ΦΦ∗ = P

Require Φ∗ Φ = I ⇒ study interpolation followed by sampling
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Example Lecture: Sampling and Interpolation Operator View

Relationships between sampling and interpolation

Interpolation followed by sampling: ŷ = Φ∗ Φ y

yn
T

g(t)
x̂(t)

g∗(−t) T
ŷn

Consider output due to input y = δ

ŷn = 〈g(t − n), g(t)〉t

Shifting input shifts output

Φ∗ Φ = I if and only if 〈g(t − n), g(t)〉t = δn
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Example Lecture: Sampling and Interpolation Operator View

Sampling for shift-invariant subspaces

Theorem

Let g be orthogonal to its integer shifts: 〈g(t − n), g(t)〉t = δn. The system

x(t) g∗(−t) T
yn

T
g(t) x̂(t)

yields x̂ = P x where P is the orthogonal projection operator onto the

shift-invariant subspace S generated by g.

Corollaries:

If x ∈ S , then x is recovered exactly from samples y

If x 6∈ S , then x̂ is the best approximation of x in S
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Example Lecture: Sampling and Interpolation Operator View

Reinterpreting classical sampling

x(t) g∗(−t) T
yn

T
g(t) x̂(t)

Case of g(t) = sinc(πt)

sinc(πt) is orthogonal to its integer shifts
◮ Immediately, orthogonal projection property holds

Prefilter bandlimits (“anti-aliasing”)

g∗(−t) = g(t)
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Example Lecture: Sampling and Interpolation Operator View

Discrete-time version (downsampling)

Definition (Sampling operator)

For a fixed positive N and sampling filter g , let Φ∗ : ℓ2(Z)→ ℓ2(Z) be given by

(Φ∗ x)k = 〈xn, gn−kN〉n, k ∈ Z

x g∗
−n N

Φ∗

y

Definition (Interpolation operator)

For a fixed positive N and interpolation filter g , let Φ : ℓ2(Z)→ ℓ2(Z) be given by

(Φ y)n =
∑

k∈Z

yk gn−kN , n ∈ Z

y N gn x̂

Φ
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Example Lecture: Sampling and Interpolation Operator View

Discrete-time version (downsampling)

Definition (Shift-invariant subspace of ℓ2(Z))

A subspace W ⊂ ℓ2(Z) is a shift-invariant subspace with respect to shift L ∈ Z+

when xn ∈ W implies xn−kL ∈ W for every integer k . In addition, w ∈ ℓ2(Z) is
called a generator of W when W = span({wn−kL}k∈Z).

Theorem

Let g be orthogonal to its shifts by multiples of N: 〈gn−kN , gn〉n = δk . The system

xn g∗
−n N

yn
N gn x̂n

yields x̂ = P x where P is the orthogonal projection operator onto the

shift-invariant subspace S generated by g with shift N.
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Example Lecture: Sampling and Interpolation Operator View

Geometric interpretation of general case

x(t) g̃(t) T
yn

T
g(t) x̂(t)

Sampling operator Φ̃∗, interpolation operator Φ
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Example Lecture: Sampling and Interpolation Operator View

Geometric interpretation of general case

x(t) g̃(t) T
yn

T
g(t) x̂(t)

Sampling operator Φ̃∗, interpolation operator Φ

Φ Φ̃∗ generally not self-adjoint, but can still be a projection operator

Let S̃ = N (Φ∗)⊥ and S = R(Φ)

Check Φ̃∗ Φ = I for an oblique projection to S

S

S̃
·

•
x̂

•x

Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 80 / 90



Example Lecture: Sampling and Interpolation Extensions

Variations

Multichannel sampling

x(t) g̃0(t)
2T y0,n

g̃1(t)
2T y1,n

Sample signal and derivatives

Periodic nonuniform sampling (time-interleaved ADC)

Many inverse problems have linear forward models, perhaps not shift-invariant

Similar subspace geometry holds

Provides foundation for recent sampling methods based on semilinear signal
models (finite rate of innovation)
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Example Lecture: Sampling and Interpolation Summary

Summary

Adjoints
◮ Time reversal between sampling and interpolation

Subspaces
◮ Shift-invariant, range of interpolator Φ

◮ Null space of sampler Φ∗

Projection
◮ ΦΦ∗ always self adjoint

◮ Φ∗ Φ = I implies ΦΦ∗ is a projection operator

◮ Together, orthogonal projection operator, best approximation

Basis expansions
◮ Sampling produces analysis coefficients for basis expansion

◮ Interpolation synthesizes from expansion coefficients
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Teaching Materials Textbooks

Textbooks

Two books:

M. Vetterli, J. Kovačević, and V. K. Goyal,

Foundations of Signal Processing

J. Kovačević, V. K. Goyal, and M. Vetterli,

Fourier and Wavelet Signal Processing

Manuscripts distributed in draft form online (originally as
a single volume and with some variations in titles) since
2010 at

http://www.fourierandwavelets.org

Free, online versions have gray scale images, no PDF
hyperlinks, no exercises with solutions or exercises
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Teaching Materials Textbooks

Textbooks

Foundations of Signal Processing

1 On Rainbows and Spectra

2 From Euclid to Hilbert

3 Sequences and Discrete-Time Systems

4 Functions and Continuous-Time Systems

5 Sampling and Interpolation

6 Approximation and Compression

7 Localization and Uncertainty

Features:

About 640 pages illustrated with more than 200 figures

More than 200 exercises (more than 30 with solutions within the text)

Solutions manual for instructors

Summary tables, guides to further reading, historical notes
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Teaching Materials Textbooks

Textbooks

Fourier and Wavelet Signal Processing

1 Filter Banks: Building Blocks of Time-Frequency Expansions

2 Local Fourier Bases on Sequences

3 Wavelet Bases on Sequences

4 Local Fourier and Wavelet Frames on Sequences

5 Local Fourier Transforms, Frames and Bases on Functions

6 Wavelet Bases, Frames and Transforms on Functions

7 Approximation, Estimation, and Compression
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Teaching Materials Textbooks

Prerequisites

Textbook is a mostly self-contained treatment

Mathematical maturity

◮ Mechanical use of calculus not enough

◮ Sophistication to read and write precise mathematical statements needed

(or could be learned here)

Linear algebra

◮ Basic facility with matrix algebra very useful

◮ Abstract view built carefully within the book

Probability

◮ Basic background (e.g., first half of Introduction to Probability by Bertsekas

and Tsitsiklis) needed (else all stochastic material could be skipped)

Signals and systems

◮ Basic background (e.g., Signals and Systems by Oppenheim and Willsky)

helpful but not necessary
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Teaching Materials Supplementary materials

Solutions manual

Convolution of Derivative and Primitive

Let h and x be differentiable functions, and let

h(1)(t) =

∫ t

−∞

h(τ) dτ and x (1)(t) =

∫ t

−∞

x(τ) dτ

be their primitives. Give a sufficient condition for h ∗ x = h(1) ∗ x ′ based on
integration by parts.
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Teaching Materials Supplementary materials

Solutions manual

From the definition of convolution, (4.35),

(h ∗ x)(t) =

∫ ∞

−∞

x(τ)h(t − τ) dτ.

We wish to apply definite integration by parts, (2.204b), to get to a form
involving h(1) and x ′. With the associations

u(τ) = x(τ) and v ′(τ) = h(t − τ),

we obtain

u′(τ) = x ′(τ) and v(τ) = −h(1)(t − τ).

Substituting these into (2.204b) gives

(h ∗ x)(t) = −x(τ) h(1)(t − τ)
∣∣t=∞

t=−∞
+

∫ ∞

−∞

h(1)(t − τ) x ′(τ) dτ. (1)

This yields the desired result of

(h ∗ x)(t) = (h(1) ∗ x ′)(t), for all t ∈ R,

provided that the first term of (1) is zero:

lim
τ→±∞

x(τ) h(1)(t − τ) = 0, for all t ∈ R.
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Teaching Materials Supplementary materials

Mathematica figures and interactive CDF documents
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ω

|X10(e jω)|
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4
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ω

|X100(e jω)|

(a) N = 10 (b) N = 100
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4
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2
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Π

2

ω

|X1000(e
jω)|

9 Π
20

Π

2

2

ω

|X1000(e
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(c) N = 1000 (d) Detail of (c).

Figure 3.8: Truncated DTFT of the sinc sequence, illus-

trating the Gibbs phenomenon. Shown are |XN(e
jω)| from

(3.84) with different N. Observe how oscillations narrow

from (a) to (c), but their amplitude remains constant (the

topmost grid line in every plot), 1.089
√
2.

Computable Document

Format (Wolfram, 2011)

Free standalone CDF

Player and browser plugins

http://demonstrations.wolfram.com/author.html?author=Jelena%20Kovacevic
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Wrap up

Why rethink how signal processing is taught?

Signal processing is an essential and vibrant field

Geometry is key to gaining intuition and understanding

Thank you for your interest

Goyal & Kovačević www.FourierAndWavelets.org September 30, 2012 90 / 90


	Introduction
	Why a tutorial on teaching?
	Overview

	Basic Principles in Teaching SP with Geometry
	Unified view
	Hilbert space tools—Part I: Basics through projections
	Basic results I: Best approximation
	Hilbert space tools—Part II: Bases through discrete-time systems

	Example Lecture: Sampling and Interpolation
	Motivation
	Classical View and Historical Notes
	Operator View
	Basis Expansion View
	Extensions
	Summary

	Teaching Materials
	Textbooks
	Supplementary materials

	Wrap up

